
set parametric
e=(sqrt(5)-1)/4
plot sin(t),cos(t)*e,e*e*sin(t)+(1-e*e),e*e*cos(t),e*sin(t),e*cos(t),(0.5+0.5*e-e*e)+(0.5-0.5*e-e*e)*sin(t),(0.5-0.5*e-e*e)*cos(t),(-1+e*e)+(e*e*sin(t)),e*e*cos(t),-(0.5+0.5*e-e*e)-(0.5-0.5*e-e*e)*sin(t),(0.5-0.5*e-e*e)*cos(t)
e=0.46
v=0.4073
u=0.673
phi=0.55
cp=cos(phi)
sp=sin(phi)
plot sin(t),cos(t),sin(t),e*cos(t),v-cp*e*sin(t)+sp*e*e*cos(t),u+sp*e*sin(t)+cp*e*e*cos(t),-v+cp*e*sin(t)-sp*e*e*cos(t),u+sp*e*sin(t)+cp*e*e*cos(t),v-cp*e*sin(t)+sp*e*e*cos(t),-u-sp*e*sin(t)-cp*e*e*cos(t),-v+cp*e*sin(t)-sp*e*e*cos(t),-u-sp*e*sin(t)-cp*e*e*cos(t)

The smallest peas match the radius-of-curvature of the ends of the ellipse; the smaller beans touch their mirror-images and the central ellipse and match the radius-of-curvature of the outer circle. Those constraints define e.